Web Matrices: Structural Properties and Generating Combinatorial Identities

نویسندگان

  • Mark Dukes
  • Chris D. White
چکیده

In this paper we present new results for the combinatorics of web diagrams and web worlds. These are discrete objects that arise in the physics of calculating scattering amplitudes in non-abelian gauge theories. Web-colouring and web-mixing matrices (collectively known as web matrices) are indexed by ordered pairs of webdiagrams and contain information relating the number of colourings of the first web diagram that will produce the second diagram. We introduce the black diamond product on power series and show how it determines the web-colouring matrix of disjoint web worlds. Furthermore, we show that combining known physical results with the black diamond product gives a new technique for generating combinatorial identities. Due to the complicated action of the product on power series, the resulting identities appear highly non-trivial. We present two results to explain repeated entries that appear in the web matrices. The first of these shows how diagonal web matrix entries will be the same if the comparability graphs of their associated decomposition posets are the same. The second result concerns general repeated entries in conjunction with a flipping operation on web diagrams. We present a combinatorial proof of idempotency of the web-mixing matrices, previously established using physical arguments only. We also show how the entries of the square of the web-colouring matrix can be achieved by a linear transformation that maps the standard basis for formal power series in one variable to a sequence of polynomials. We look at one parameterized web world that is related to indecomposable permutations and show how determining the web-colouring matrix entries in this case is equivalent to a combinatorics on words problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating matrices of C–nomial coefficients and their spectra

In this paper, we consider a generalization of binomial coefficients, called C– nomial coefficients, dependent upon a sequence {un}n, with indices in arithmetic progressions. We obtain a general recurrence relation and a generating matrix, and point out some new relationships between these coefficients and the generalized Pascal matrices. Further, we obtain generating functions, combinatorial r...

متن کامل

Matrix Compositions

In this paper we study the class of m-row matrix compositions (m-compositions, for short), i.e., m-row matrices with nonnegative integer entries in which every column has at least one non-zero element. We provide several enumerative results, various combinatorial identities, and some combinatorial interpretations. Most of these properties are an extension to matrix compositions of the combinato...

متن کامل

Combinatorial Proofs of q-Series Identities

We provide combinatorial proofs of six of the ten q-series identities listed in [3, Theorem 3]. Andrews, Jiménez-Urroz and Ono prove these identities using formal manipulation of identities arising in the theory of basic hypergeometric series. Our proofs are purely combinatorial, based on interpreting both sides of the identities as generating functions for certain partitions. One of these iden...

متن کامل

On finding a particular class of combinatorial identities

In this paper, a class of combinatorial identities is proved. A method is used which is based on the following rule: counting elements of a given set in two ways and making equal the obtained results. This rule is known as " counting in two ways ". The principle of inclusion and exclusion is used for obtaining a class of (0, 1)−matrices. A modification of the method of " counting in two ways " ...

متن کامل

The Generating Function of Ternary Trees and Continued Fractions

count ternary trees and the number of certain plane partitions and alternating sign matrices. Tamm evaluated these determinants by showing that the generating function for these entries has a continued fraction that is a special case of Gauss’s continued fraction for a quotient of hypergeometric series. We give a systematic application of the continued fraction method to a number of similar Han...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016